Aprendizaje Profundo (Deep Learning)

Los métodos de aprendizaje profundo de la Red neuronal convolucional profunda (DCNN) pueden procesar enormes cantidades de datos a través de una red de nodos de toma de decisiones o neuronas, y son bien considerados por su excelente rendimiento en aplicaciones basadas en el reconocimiento de imágenes.

Reconstrucción de aprendizaje profundo (DLR)

AiCE fue entrenado en grandes cantidades de imágenes de alta calidad reconstruidas con un algoritmo MBIR avanzado que es computacionalmente intensivo para uso clínico. Este entrenamiento le enseñó a AiCE a distinguir la señal verdadera del ruido. Los resultados fueron validados por un equipo de radiólogos, físicos médicos, científicos de AI e investigadores clínicos, produciendo un algoritmo de reconstrucción rápido y completamente entrenado listo para uso clínico.

El DCNN aprende qué métodos se aplican mejor para mantener la resolución espacial y las propiedades de bajo ruido contenidas en el algoritmo MBIR avanzado. Cuantas más variaciones de datos se suministren durante el entrenamiento, mejor será el rendimiento del algoritmo final en términos de calidad de imagen y velocidades de procesamiento.


El DCNN se programa esencialmente a sí mismo a medida que aprende, para ser más preciso y más eficiente con cada nueva tarea de capacitación. La capacitación es supervisada por un ingeniero con experiencia en AI y DCNN, que puede variar algunas condiciones de operación para garantizar que se logren los mejores resultados.

Luego, el software se somete a una validación importante, donde se le proporciona solo datos de baja calidad para reconstruir en función de lo que ha aprendido. DCNN no debe conocer las imágenes objetivo de alta calidad y el ingeniero de inteligencia artificial las utiliza para evaluar la precisión y el rendimiento en función de varias métricas de calidad de imagen. Una vez validada, la red neuronal se ajusta al máximo rendimiento donde contiene todo el conocimiento requerido para realizar una reconstrucción avanzada y de calidad a partir de prácticamente cualquier variación del tamaño del paciente y la dosis de exposición.

Whitepaper

AiCE Deep Learning Reconstruction:
Bringing the power of Ultra-High Resolution CT to routine imaging

Kirsten Boedeker, PhD, DABR
Senior Manager, Medical Physics
Canon Medical Systems Corporation

Pulse AQUÍ para descargar el documento